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Similarly to the recently obtained result for two-terminal systems, we show that there are constraints on the
full counting statistics for noninteracting fermions in multiterminal contacts. In contrast to the two-terminal
result, however, there is no factorization property in the multiterminal case.
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I. INTRODUCTION

The problem of full counting statistics �FCS� of electronic
charge transfer has been addressed since long time1 and the
particular model of noninteracting fermions has been studied
in detail in various setups. The FCS for transfer of noninter-
acting fermions is given by the Levitov-Lesovik determinant
formula1–5 valid at arbitrary temperature and for an arbitrary
time evolution of the scatterer. Recently, some properties of
this result have been elucidated. First, in the particular case
of charge transfer driven by a time-dependent bias voltage at
zero temperature, the resulting FCS enjoys certain
symmetries.6–8 Second, in the more general case of an arbi-
trary time-dependent scatterer and at arbitrary temperature, it
has been shown that the FCS is factorizable into independent
single-particle events.8,9

In the present work, we generalize the result of Refs. 8
and 9 to a multiterminal setup. As in those works, we address
the problem of determining which multichannel charge trans-
fers are possible and which are not in an arbitrary quantum
pump, in the model of noninteracting fermions. In the two-
terminal case, the constraint derived in Refs. 8 and 9 is exact.
In the multiterminal case, however, the problem is more
complicated, and we have only partially solved it: we have
formulated a necessary constraint �a “convexity condition”�
on the charge-transfer statistics, without a proof �or a coun-
terexample� that this constraint is sufficient. Also, there is no
obvious physical interpretation of this constraint: we show
that, unlike in the two-terminal case, our constraint cannot be
interpreted as a factorization property of the charge-transfer
statistics. This work is partly based on the results reported in
Ref. 10.

II. DETERMINANT FORMULA

We first present notation and review the Levitov–Lesovik
determinant formula1–5 for charge transfer of noninteracting
fermions in application to a multilead setup. The notation
and argument is fully parallel to that in Ref. 9 where the
two-lead case was considered.

We consider a contact with L leads, connected by an ar-
bitrary time-dependent scatterer �see Fig. 1�. To each lead
�numbered i=1, . . . ,L� we associate a “counting field”1 �i
and a projector operator Pi acting in the single-particle Hil-
bert space. The leads are defined in such a way that

�
i=1

L

Pi = 1. �1�

Then the probabilities of the multilead charge transfers can
be determined from the generating function

���1, . . . ,�L� = Tr��̂0Û†ei�P̂Ûe−i�P̂�/Tr �̂0. �2�

Here the trace is taken in the multiparticle Fock space, �̂0 is

the initial density matrix, Û is the multiparticle evolution

operator. We also use the shorthand notation �P̂=�i�iP̂i,

where P̂i is the multiparticle operator �a fermionic bilinear�9

constructed from the projector Pi �it counts the particles in
the lead i�. As in the two-lead problem,9 under the assump-

tion that �̂0 commutes with P̂i �the absence of entanglement
in the initial state�, the Fourier components of the generating
function �2� give the charge-transfer probabilities Pq1,. . .,qL

,

���1, . . . ,�L� = �
q1,. . .,qL=−�

�

Pq1,. . .,qL
exp�i�

i=1

L

�iqi� . �3�

Those probabilities are only nonzero for charge-conserving
transfers with �iqi=0. This charge conservation corresponds
to the symmetry of the generating function with respect to a
simultaneous shift of all variables,

���1, . . . ,�L� = ���1 + ��, . . . ,�L + ��� . �4�

As in the two-lead case, we define the complex variables

ui = ei�i, i = 1, . . . ,L , �5�

and consider the generating function as a function of ui.
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FIG. 1. A schematic figure of the multiterminal contact. To each
of the L leads, there corresponds a single-particle projector Pi and a
counting variable �i.
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As in Ref. 9, we assume, in addition to the absence of

entanglement of the initial state, that both �̂0 and Û are ex-
ponentials of fermionic bilinears �which reflects our assump-
tion of noninteracting fermions�. Under those assumptions,
we repeat the calculation of Ref. 9 and arrive at the resulting
determinant formula

���1, . . . ,�L� = det�1 + nF�U†ei�PUe−i�P − 1�� , �6�

which involves only operators in the single-particle Hilbert
space with the occupation-number operator

nF =
�0

�0 + 1
. �7�

III. CONVEXITY CONDITION

Similarly to the trick employed in Ref. 9, we can rewrite
the determinant formula by defining the hermitian “effective-
transparency operators”

X̃�i� = �1 − nF�Pi + nF
1/2U†PiUnF

1/2. �8�

After simple algebra �using the completeness relation �1��,
one can re-express the generating function �6� as

��u1, . . . ,uL� = det�e−i�P�
i=1

L

uiX̃�i�	 . �9�

The eigenvalues of the operators X̃�i� are bounded between 0
and 1, which allows us to prove a certain constraint on the
zeroes �roots� of the generating function �9�. An elegant form
of this constraint can be formulated in terms of the convex
envelope �convex hull� Hc�X� of a given set of complex num-
bers X: a minimal convex set containing X �see Fig. 2�a��.
The constraint may now be cast in the form of two condi-
tions that need to be satisfied:

�1� For any root of the characteristic function
��u1 , . . . ,uL�=0, the convex envelope Hc�
u1 , . . . ,uL�� con-
tains zero.

�2� If ��u1 , . . . ,uL�=0 and if zero belongs to the boundary
of Hc�
u1 , . . . ,uL��, then those of the points 
u1 , . . . ,uL� that

do not lie on the straight segment of the boundary of
Hc�
u1 , . . . ,uL�� containing zero, can be arbitrarily changed
while still satisfying the equation ��u1 , . . . ,uL�=0 �Fig.
2�b��.

The proof of condition 1 is easy: if ��
 is a zero mode of
the operator in the determinant �9�, then

�
i=1

L

ui���X̃�i���
 = 0. �10�

Since all the coefficients ���X̃�i���
 are non-negative real
numbers �whose sum equals one�, zero belongs to the convex
envelope of u1 , . . . ,uL.

To prove condition 2, consider again a root �u1 , . . . ,uL� of
the generating function and the corresponding zero mode
��
. If zero lies at the boundary of the convex envelope
Hc�
u1 , . . . ,uL��, then the linear combination �10� contains

nonvanishing coefficients ���X̃�i���
 only for variables ui
which belong to the same straight segment of the boundary
containing zero. All the other coefficients necessarily vanish,

which, by virtue of the non-negativity of X̃�i�, implies

X̃�i���
=0. Therefore all those variables ui may be changed
arbitrarily while ��
 will remain a zero mode. This com-
pletes the proof of condition 2.

We can make several comments on the obtained result.
First, in the particular case of two leads �L=2�, this con-
straint is equivalent to that found in Ref. 9 �the variable u in
that work corresponds to the ratio u1 /u2 in our present nota-
tion�. Second, while our constraint is a necessary condition
for realizability of a given statistics in a noninteracting fer-
mionic system, we could not determine if it is also a suffi-
cient one. Moreover, we do not have any algorithm which
would determine if a given charge-transfer statistics is real-
izable �or design a suitable quantum evolution if it is�. Those
interesting questions are left for future studies. Third, our
criterion is technically difficult to check in its full formula-
tion for all roots �u1 , . . . ,uL�. However, for practical applica-
tions, one may test the constraint on suitably chosen families
of roots �e.g., one-parametric families�,13 either analytically
or numerically.

IV. NONFACTORIZABILITY

In the two-terminal case, the “convexity condition” de-
rived above implies a factorizability of the charge-transfer
statistics: the probabilities of a given charge transfer are the
same as in a superposition of some single-electron transfer
processes �whose transfer probabilities depend in a nontrivial
way on the evolution of the quantum system�. One can see
that it is not the case in the multiterminal �L	2� case.

This can be most easily demonstrated with a counterex-
ample involving only a finite number of electrons �in the
wave packet formalism of Ref. 11, to which our result is also
applicable�. Consider two fermions sent into a stationary
multiterminal contact along two terminals �labeled 1 and 2�
with exactly the same shape of wave packets �Fig. 3�. Then,
due to the Fermi statistics of particles, the probabilities to
have both fermions scattered to the same lead vanish. The
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FIG. 2. �a� Illustration of the definition of the convex envelope
�convex hull�. The shaded region shows the convex envelope of the
points u1 , . . . ,u6 in the complex plane. If the points u1 , . . . ,u6 cor-
respond to a root of the generating function, then condition 1 of the
constraint claims that zero must belong to the shaded region. �b�
Illustration of condition 2 of the constraint. In this figure �with the
points u1 , . . . ,u6 corresponding to a root of the generating function�,
the points u2, u3, and u6 can be changed arbitrarily, and the set of
points will still give a root of the generating function.
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resulting generating function will therefore have the form

��u1, . . . ,uL� =
1

u1u2
�
i
j

�ijuiuj , �11�

where �ij = �s1is2j −s2is1j�2 are the probabilities of various
two-particle transfer events constructed out of the single-
particle scattering amplitudes sij �which are assumed to be
time and energy independent�. On the other hand, the factor-
izability of the charge transfer would imply

��u1, . . . ,uL� =
1

u1u2
��

i

piui���
i

pi�ui� , �12�

for some probabilities pi and pi�. One can verify that if one
considers a statistics �11� with all �ij nonzero �which is pos-
sible�, then such a statistics is not factorizable in form �12�.

V. CONCLUSION

To summarize, we have considered the problem of pos-
sible full counting statistics for noninteracting fermions in
coherent multiterminal systems. We have obtained a neces-
sary condition for a full counting statistics to be realizable.
Like in the two-terminal case,9 this condition may be used to
prove impossibility of certain sets of charge-transfer prob-
abilities �one can easily construct examples of such impos-
sible statistics�.

At the same time, the problem of designing an actual
“quantum pump” for a given charge-transfer statistics �or
even merely proving its possibility� appears much more dif-
ficult in the multiterminal case than in the two-terminal one.
While in the two-terminal case, the full counting statistics of
noninteracting fermions is conveniently parameterized by the
spectral density of “effective transparencies,”9 we are not
aware of a similar parameterization in the multiterminal case.
In the formulation with a finite number of particles,11 even
the question of the dimensionality of the space of all possible
full counting statistics remains open. All those interesting
questions deserve further study, in particular, in the context
of using quantum contacts for generating entangled states.12
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FIG. 3. A counterexample proving nonfactorizability of the full
counting statistics for multiterminal contacts. Two fermions are sent
to a time- and energy-independent L lead scatterer �with L�3�
along the leads 1 and 2 in the shape of exactly identical wave
packets, synchronized in time.
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